7.5 Finding μ and σ - 知识点总结

7.5 寻找未知μ和σ - 核心知识点总结
1. 基本概念 / Basic Concepts

核心思路:使用标准化公式 Z = (X - μ)/σ 将问题转化为标准正态分布问题

Core approach: Use the standardization formula Z = (X - μ)/σ to transform the problem into a standard normal distribution problem

• 给定概率条件 → 建立方程 → 求解参数

• Given probability conditions → Establish equations → Solve parameters

2. 问题类型分类 / Problem Type Classification
问题类型 / Problem Type 已知条件 / Given Conditions 求解目标 / Target 所需信息 / Required Information
类型1 / Type 1 σ已知 / σ known 求μ / Find μ 1个概率条件 / 1 probability condition
类型2 / Type 2 μ已知 / μ known 求σ / Find σ 1个概率条件 / 1 probability condition
类型3 / Type 3 μ和σ都未知 / Both μ and σ unknown 求μ和σ / Find μ and σ 2个独立概率条件 / 2 independent probability conditions
3. 求解未知均值μ / Finding Unknown Mean μ

标准步骤:

Standard steps:

  1. 使用标准化公式:P(X > a) = P(Z > (a - μ)/σ)
  2. Use standardization formula: P(X > a) = P(Z > (a - μ)/σ)
  3. 查找对应的z值
  4. Find corresponding z-value
  5. 建立方程:(a - μ)/σ = z
  6. Establish equation: (a - μ)/σ = z
  7. 求解μ:μ = a - zσ
  8. Solve for μ: μ = a - zσ
典型例子 / Typical Example

X ~ N(μ, 3²), P(X > 20) = 0.20

P(Z > (20 - μ)/3) = 0.20

z = 0.8416

(20 - μ)/3 = 0.8416

μ = 20 - 3 × 0.8416 = 17.5

4. 求解未知标准差σ / Finding Unknown Standard Deviation σ

标准步骤:

Standard steps:

  1. 使用标准化公式:P(X < a) = P(Z < (a - μ)/σ)
  2. Use standardization formula: P(X < a) = P(Z < (a - μ)/σ)
  3. 查找对应的z值(注意符号)
  4. Find corresponding z-value (pay attention to sign)
  5. 建立方程:(a - μ)/σ = z
  6. Establish equation: (a - μ)/σ = z
  7. 求解σ:σ = (a - μ)/z
  8. Solve for σ: σ = (a - μ)/z
典型例子 / Typical Example

X ~ N(50, σ²), P(X < 46) = 0.2119

P(Z < (46 - 50)/σ) = 0.2119

P(Z < -4/σ) = 0.2119

z = -0.80

-4/σ = -0.80

σ = 4/0.80 = 5

5. 同时求解μ和σ / Simultaneously Finding μ and σ

标准步骤:

Standard steps:

  1. 建立两个方程:
  2. Establish two equations:
  3. P(X > a₁) = p₁ → P(Z > (a₁ - μ)/σ) = p₁
  4. P(X < a₂) = p₂ → P(Z < (a₂ - μ)/σ) = p₂
  5. 查找对应的z值:z₁, z₂
  6. Find corresponding z-values: z₁, z₂
  7. 建立方程组:
  8. Establish system of equations:
  9. (a₁ - μ)/σ = z₁
  10. (a₂ - μ)/σ = z₂
  11. 解方程组求μ和σ
  12. Solve the system for μ and σ
典型例子 / Typical Example

X ~ N(μ, σ²)

P(X > 35) = 0.025 → z₁ = 1.96

P(X < 15) = 0.1469 → z₂ = -1.05

方程组 / System of equations:

(35 - μ)/σ = 1.96 → 1.96σ + μ = 35 ... (1)

(15 - μ)/σ = -1.05 → -1.05σ + μ = 15 ... (2)

(1) - (2): 3.01σ = 20 → σ = 6.64

μ = 35 - 1.96 × 6.64 = 22.0

6. 特殊情况处理 / Special Case Handling
对称性问题 / Symmetry Problems

当P(X > a) = P(X < b) = p时:

When P(X > a) = P(X < b) = p:

• 利用对称性:μ = (a + b)/2

• Use symmetry: μ = (a + b)/2

• 然后求σ:P(X > a) = p → σ = (a - μ)/z

• Then find σ: P(X > a) = p → σ = (a - μ)/z

分位数问题 / Quantile Problems

当给定分位数时:

When given quantiles:

• 下四分位数:P(X < Q₁) = 0.25

• Lower quartile: P(X < Q₁) = 0.25

• 上四分位数:P(X < Q₃) = 0.75

• Upper quartile: P(X < Q₃) = 0.75

• 建立方程组求解

• Establish system of equations to solve

7. 重要公式总结 / Important Formula Summary

标准化公式:Z = (X - μ)/σ

Standardization formula: Z = (X - μ)/σ

求解μ:μ = a - zσ

Solve for μ: μ = a - zσ

求解σ:σ = (a - μ)/z

Solve for σ: σ = (a - μ)/z

对称性:μ = (a + b)/2 (当P(X > a) = P(X < b)时)

Symmetry: μ = (a + b)/2 (when P(X > a) = P(X < b))

8. 解题技巧 / Problem-Solving Tips
  1. 识别问题类型 - 确定是求μ、σ还是两者
  2. Identify problem type - Determine whether to find μ, σ, or both
  3. 绘制图表 - 帮助理解概率条件
  4. Draw diagrams - Help understand probability conditions
  5. 注意z值符号 - 正确判断z值的正负号
  6. Pay attention to z-value signs - Correctly determine the sign of z-values
  7. 检查方程数量 - 确保有足够的方程求解未知数
  8. Check number of equations - Ensure sufficient equations to solve unknowns
  9. 验证答案 - 代入原条件检查答案合理性
  10. Verify answers - Substitute back into original conditions to check reasonableness
9. 常见错误 / Common Mistakes
避免这些错误 / Avoid These Mistakes
10. 实际应用 / Practical Applications
应用领域 / Application Areas
11. 考试技巧 / Exam Tips
考试注意事项 / Exam Precautions
12. 练习建议 / Practice Recommendations
提高技能的建议 / Suggestions for Skill Improvement
  1. 多做不同类型的题目 - 熟悉各种问题类型
  2. Practice different types of problems - Familiarize with various problem types
  3. 熟练掌握标准化公式 - 这是解题的基础
  4. Master the standardization formula - This is the foundation of problem solving
  5. 练习方程组求解 - 提高计算能力
  6. Practice system of equations solving - Improve calculation skills
  7. 注意特殊情况 - 掌握对称性等技巧
  8. Pay attention to special cases - Master techniques like symmetry
  9. 时间管理 - 在考试中合理分配时间
  10. Time management - Allocate time reasonably in exams